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Details of the Meta-analysis 

The meta-analysis is an update of the previous 2002 meta-analysis that includes results from 

published trials of mammography screening for women aged 40 to 49 years that report reduction in 

breast cancer mortality. With the addition of only one new data point, the meta-analysis for the update 

was less extensive than the 2002 meta-analysis. We did not update the model for relative risk and 

length of follow-up (the two-level hierarchical model). We conducted similar updates for other age 

groups for context. 

As with the original 2002 meta-analysis, we estimated the model by using a Bayesian data 

analytic framework, but this time using the BRugs package in R (22, 23). BRugs is an R interface to 

OpenBUGS, the successor to WinBUGS. The R code to create the dataset is below. 

# R code to create dataset 

study <- c('Age', 'CNBSS-1', 'HIP', 'Gothenburg', 'Stockholm', 'Malmo', 'Kopparberg', 'Ostergotland') 

y.int   <- c(    105,    105,     64,     34,     34,     53,     22,     31) 

n.int   <- c(  53884,  25214,  13740,  11724,  14303,  13568,   9582,  10285) 

py.int  <- c( 578390, 282606, 192360,     NA, 203000, 184000, 124566, 172000) 

y.cntl  <- c(    251,    108,     82,     59,     13,     66,     16,     30) 

n.cntl  <- c( 106956,  25216,  13740,  14217,   8021,  12279,   5031,  10459) 

py.cntl <- c(1149380, 282575, 192360,     NA, 117000, 160000,  65403, 176000) 

n <- 10000 

rate.int  <- n * y.int /n.int 

rate.cntl <- n * y.cntl/n.cntl 

rr <- rate.int/rate.cntl 

rd <- rate.int-rate.cntl 

nns <- 1 / ((y.cntl/n.cntl) - (y.int /n.int)) 

dataset <- data.frame( 

  study, 

  y.int , n.int , py.int , rate.int , 

  y.cntl, n.cntl, py.cntl, rate.cntl, 

  rr, rd, nns 

) 
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# Save dataset for BRugs to use 

dataset.bugs <- cbind(y.int, n.int, y.cntl, n.cntl) 

colnames(dataset.bugs) <- c("y.int", "n.int", "y.cntl", "n.cntl") 

bugsData(data.frame(dataset.bugs), fileName="dataset.bugs", digits = 5) 

constants <- cbind(nrow(dataset.bugs)) 

colnames(constants) <- c("n") 

bugsData(data.frame(constants), fileName="constants.bugs", digits = 1) 

 

The model assumes that the number of deaths from each study come from a binomial 

distribution with the probability parameter of α for the control group and α + β for the screening group. 

A random component, σ zi , is added to both probability parameters to allow for the random effect of 

the study i . Noninformative prior probability distributions were used.  

# BUGS model 

# This model is saved in a text file named “model.bugs” 

model; 

{ 

  for( i in 1 : n ) { 

    z[i] ~ dnorm(0, 1) 

    logit(p.int[i] ) <- alpha + beta + sigma * z[i] 

    logit(p.cntl[i]) <- alpha        + sigma * z[i] 

    y.int[i]  ~ dbin(p.int[i] , n.int[i] ) 

    y.cntl[i] ~ dbin(p.cntl[i], n.cntl[i]) 

  } 

  alpha ~ dnorm(-5.0, 1.0E-1) 

  beta  ~ dnorm(0.0, 1.0E-1) 

  sigma ~ dnorm(0.5, 1.0E-1) I(0, ) 

} 

 

Four separate Markov chains with overdispersed initial values were used for estimation. A 

burn-in of 10,000 draws was used to initialize the chains and were checked for convergence. 

# Check the model and load the dataset 

modelCheck(“model.bugs”) 

modelData(“constants.bugs”) 

modelData(“dataset.bugs”) 
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# Compile the model with 4 MCMC chains 

modelCompile(numChains=4) 

# Generate overdispersed initial values 

modelGenInits() 

# Keep MCMC samples of parameters alpha, beta, and sigma 

samplesSet(“alpha”) 

samplesSet(“beta”) 

samplesSet(“sigma”) 

# Thin samples so only 1000 draws are left 

samplesSetThin(10000/(1000/getNumChains())) 

# Generate 10,000 burn-in draws 

modelUpdate(10000) 

samplesHistory(“*”, thin=samplesGetThin()) 

 

The convergence of the parameter estimation was assessed and deemed adequate from the 

10,000 burn-in draws. Next, we generated 100,000 draws from the four chains. These draws were 

thinned to yield a sample of 1,000 uncorrelated estimates from the posterior distributions.  

# Clear samples from the previous burn-in 

samplesClear(“*”) 

# Keep MCMC samples of parameters alpha, beta, and sigma 

samplesSet(“alpha”) 

samplesSet(“beta”) 

samplesSet(“sigma”) 

# Thin samples so only 1000 draws are left 

samplesSetThin(100000/(1000/getNumChains())) 

modelUpdate(100000) 

samplesHistory(“*”, thin=samplesGetThin()) 

# Check correlation of the thinned samples 

for (i in 1:getNumChains()) { 

  samplesAutoC(“*”, i, thin=samplesGetThin()) 

} 

# Check the probability distribution of the parameters 

samplesDensity(“*”, thin=samplesGetThin()) 

# Output sample estimates to an R object 

brugs.nodes <- samplesHistory(“*”, thin=samplesGetThin(), plot=FALSE) 
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After the model was estimated and the samples were thinned, sample rates per 10,000 women 

screened with mammography and control participants were calculated from the estimates of alpha and 

beta.  Sample relative risk, risk difference, and number needed to invite to screening were calculated 

from the sample rates. 

# Assign parameter samples to separate R vectors 

alpha <- as.vector(brugs.nodes$alpha) 

beta  <- as.vector(brugs.nodes$beta ) 

sigma <- as.vector(brugs.nodes$sigma) 

# Rate calculations 

# Note: this produces 1000 samples for each rate, RR, RD, and NNS 

n <- 10000  

rate1 <- n * exp(alpha+beta) / (1+exp(alpha+beta))  

rate2 <- n * exp(alpha     ) / (1+exp(alpha     ))  

rr <- rate1 / rate2  

rd <- rate1 - rate2  

nns <- n / (rate2 - rate1)  

 

From the 1,000 thinned posterior samples, point estimates (mean) and 95% credible intervals 

(2.5 and 97.5 percentiles) for relative risk, risk difference, and number needed to invite to screening 

were calculated. 

# Define R function; it will be used a number of times 

brugs.nodesummary <- function(x, name) { 

  Samples <- length(x) 

  Mean <- mean(x) 

  SD <- sd(x) 

  MCMC.error <- sd(x) / sqrt(length(x)) 

  Median <- median(x) 

  P.025 <- quantile(x, prob=c(0.025)) 

  P.975 <- quantile(x, prob=c(0.975)) 

  nodesummary <- data.frame(cbind(Samples, Mean, Median, P.025, P.975, SD, MCMC.error)) 

  rownames(nodesummary) <- name 

  colnames(nodesummary) <- c(“Samples”, “Mean”, “Median”, “P.025”, “P.975”, “SD”, “MCMC.error”) 

  data.frame(nodesummary) 
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} 

# Call defined function brugs.nodesummary 

print(brugs.nodesummary(alpha , “alpha” )) 

print(brugs.nodesummary(beta  , “beta”  )) 

print(brugs.nodesummary(sigma , “sigma” )) 

print(brugs.nodesummary(rate1 , “rate1” )) 

print(brugs.nodesummary(rate2 , “rate2” )) 

print(brugs.nodesummary(rr    , “rr”    )) 

print(brugs.nodesummary(rd    , “rd”    )) 

print(brugs.nodesummary(nns   , “nns”   )) 

 

The pooled number needed to invite to screening could be misleading if the baseline risk of 

mortality is appreciably varied between studies (67). One recommendation to accommodate this is to 

apply the pooled relative risk estimate to a range of control rates and then calculate number needed to 

invite to screening. The pooled rate of mortality among the control groups of our studies was estimated 

to be 35.5 deaths per 10,000 women (95% CrI 25.1 to 48.3). The range of mortality rates among the 

control groups was 16.2 to 59.7 per 10,000 women. Applying the pooled relative risk estimate of 0.85 

to the high end of the mortality rate range (59.7) yields a number needed to invite to screening estimate 

of 1,116 per 10,000 women. Applying the pooled relative risk estimate of 0.85 to the low end of the 

mortality rate range (16.2) yields a number needed to invite to screening estimate of 4,115 per 10,000 

women. This range 1,116 to 4,115 per 10,000 women is within the 95% CrI we report for number 

needed to invite to screening that we estimated from the posterior distributions of our mortality rate 

estimates. Alternatively, the bounds of our 95% CrI to number needed to invite to screening correspond 

to a range of control group mortality rates of 10.5 to 71.8 per 10,000 women, a range beyond that seen 

in the studies included in our analysis. 


